
Il

DT~FILE COPY

Technical Document 1881

N July 1990

Coordinates of a
Life-Cycle Model for a
Software System and

I Communicating the Need
for Software Technology

S

A ppoved for pubic releaso; Atrlbuton Is unlimited.

9 09 _L 20'-

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-65000

J. D. FONTANA, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

This work was performed for the Naval Ocean Systems Center, San Diego, CA 92152-5000,
under program element 0602234N. Contract N66001-87-D-0179 was carried out by TECHPLAN
Corporation, 5353 Mission Center Road, Suite 310, San Diego, CA 92108-0018, under the technical
coordination of L. Sutton, Computer Systems and Software Technology Branch, Code 411, Naval
Ocean Systems Center.

Released by Under authority of
D. L. Hayward, Head A. G. Justice, Head
Computer Systems and Information Processing and
Software Technology Br" Displaying Division

FS

F Coordinates ofra Llfe-cye Mdel frma Software System ad Communicating the Need for Software Tedinoogy

ABSTRACT

On August 7-9, 1989, the Navy 6.2 Software Technology Project held a workshop meeting at the

Naval Postgraduate School in Monterey, CA. Two parallel working groups were formed to
address:1

1) Evolving a consensus on the coordinates of a suitable software life-cycle
model for the Navy1 L

i_%o ICommunicating the need for software technology.

The Working Mee1ig wsopened by CDR Jane Van Fossen of the Office of Navy Technology
who described the nature of software technology from a financial investment perspective. It was
noted that software technology is a low profile budget item, with essentially no Navy 6.3A
investment and a 6.2 budget that represents only about two million of the $430 million ONT
budget. This level of investment in software technology seems inappropriate in light of the
significance of software for major Navy systems. After CDR Van Fossen's remarks, the two
workin groups separated to pursue their respective topics.

This report summarizes the efforts of these working groups. Working Group I accomplishments
are summarized in Section 2. Working Group 2 accomplishments are summarized in Section 3.
Working group participants ate listed in Appendices A and B respectively.

Accession For

NTIS CRA&I
DTIC TAB
Un-nnounced El
Ju~tLfication

D'o.

vi. tY Codes- i .. . ! 1d/or
Dist 11? iaI IIl

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technology

TABLE OF CONTENTS

TITLE PAGE

SECTION 1.0 1

1.1 Introduction 1

1.2 Initial Session - August 7, 1989 1

SECTION 2.0 2

2.1 Working Group 1 - Theme 2

2.2 Basic Working Group Directions 2
2.2.1 Single vs Multiple Life-Cycle-Models 2
2.2.2 Elements of a Life-Cycle Model 2
2.2.3 Related Issues 2
2.2.4 Process Research and Exploratory Development Consensus 3

2.3 Working Group 1 Findings 3
2.3.1 Need for a Framework of Software Construction Models 4
2.3.2 Understanding the Process of Large Software System Dev. 4
2.3.3 Navy Sponsorship of Software Process Research 5

2.4 Elements or Coordinates of the Software Life-Cycle 5
2.4.1 Software Products 5
2.4.2 Production Processes 5
2.4.3 Production Settings 5

2.5 Process Network Decomposition 6

2.6 Most Common and Tangible Software Products 6

2.7 Conclusions 6

i-i

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technololy

TITLE PAGE

SECTION 3.0 7

3.1 Working Group 2 - Theme 7

3.2 First Working Group 2 Session - August 7, 1989 7
3.2.1 Presentation by Thomas Conrad, NUSC 7
3.2.2 Presentation by Jay Crawford of the NWC 8
3.2.3 Discussion on NWC Presentation 8
3.2.4 Presentation by Robert Wasilausky of the NOSC 8
3.2.5 Presentation by William Sweet of the SEI 9
3.2.6 Example of Successful Workshop Report 9
3.2.7 General Discussion on Presentations 10

3.3 Second Working Group 2 Session - August 8, 1989 10
3.3.1 Description of SLCSE Development 10
3.3.2 SLCSE and Related Discussions 11

3.4 Answers to Questions Posed in Session 1 11
3.4.1 Definition of Software Technology 11
3.4.2 Identification of Software Technology Breakthroughs 11
3.4.3 Issues to be Addressed by the Navy 6.2 Software Program 12
3.4.4 Discussion of Software Terms Needing Definition 12

3.5 Third Working Group 2 Session - August 9, 1989 12
3.5.1 Presenting Software Technology Information 13

Table 3-1. Level-of-effort, order, and relative value of options 13

3.6 Future Working Group 2 Meetings 14

APPENDICES

APPENDIX A - Working Group 1 Attendees 15

APPENDIX B - Working Group 2 Attendees 17

APPENDIX C - Initial Charge to Working Group 2 18

iii

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technolgy

SECTION 1.0

PROCEEDINGS OF WORKING GROUPS ONE AND TWO

COORDINATES OF A LIFE-CYCLE MODEL
FOR A SOFTWARE SYSTEM

and

COMMUNICATING THE NEED FOR SOFTWARE TECHNOLOGY

1.1 Introduction.

On August 7-9, 1989, the Navy 6.2 Software Technology Project held a workshop meeting at the
Naval Postgraduate School in Monterey, CA. Two parallel working groups were formed to
address:

" Evolving a consensus on the coordinates of a suitable software life-cycle model for
the Navy,

o Communicating the need for software technology.

This report summarizes the efforts of these working groups. Working Group 1 accomplishments
are summarized in Section 2. Working Group 2 accomplishments are summarized in Section 3.
Working group participants are listed in Appendices A and B respectively.

1.2 Initial Session - August 7, 1989.

The Working Meeting was opened by CDR Jane Van Fossen of the Office of Navy Technology
who described the nature of software technology from a financial investment perspective. It was
noted that software technology is a low profile budget item, with essentially no Navy 6.3A
investment and a 6.2 budget that represents only about two million of the $430 million ONT
budget. This level of investment in software technology seems inappropriate in light of the
significance of software for major Navy systems. After CDR Van Fossen's remarks, the two
working groups separated to pursue their respective topics.

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technology

SECTION 2.0

COORDINATES OF A LIFE-CYCLE MODEL FOR THE NAVY

2.1 Working Group 1 - Theme.

The Software Process Working Group 1 was convened to:

o Explore the possibility of a consensus among those whose work is centered in
improving or in radically altering the life-cycle processes used in the development
and evolution of large systems,

o Work out and agree upon the terms of that consensus,

o Consider how the evolution and emergence of that consensus can be supported and
fostered both within the STP and within the Navy Laboratory community.

The convening of this working group is a project milestone.

2.2 Basic Working Group Directions.

Working Group 1 deliberations had two basic directions. The first dealt with the nature of the
life-cycle model needed for Navy software and systems and its relationship to current life-cycle
models and current research in process models. The second dealt with the features of life-cycle
models and finding ways to adequately and thoroughly characterize such models. The group
also considered several related issues.

2.2.1 Single vs Multiple Life-Cycle-Models.

The Working Group faced a number of questions concerning the nature and purpose of life-cycle
models: Should there be a single model to which all will be required to conform? Should there
be representative models which do not conform to a project's specific needs but which are
sufficiently broad to demonstrate how many different features -- some of which do pertain to that
project's needs -- can be incorporated into the same model?

These discussions resulted in the conclusion that there is a "CUT" or framework, or modeling
framework, which can be defined and described both formally and otherwise. Such a cut may
indeed be called a model (or even a Primary Life-Cycle Model), but is not in itself a sufficient
definition of a completely determined application-specific model. Rather, it is the context for
the necessary task of working out in detail the specific model needed for a given application.
Moreover, there is not a single cut or framework, but several. Two such cuts were discussed at
the Monterey meeting and briefly compared and contrasted. There are different approaches to
the framework and they may yield different frameworks.

2.2.2 Elements of a Life-Cycle Model.

The Working Group faced questions concerning the various possibilities for identifying the
elements which make up a fully defined model. These discussions resulted in the conclusion that
within a given framework, the elements which together make up the model can be identified and
defined in terms of invariants or constants which can be reused in various ways to create a range

2

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technology

of different models all within the given framework. These elements become, within that
particular framework, a set of model construction primitives. The working group members
engaged in a lively effort to identify some of the primitives and this effort resulted in certain
incomplete but interesting sample lists of primitives. This effort concluded with a demonstration
by example of how the primitives could be used to form a specific process model.

2.2.3 Related Issues.

There were several ongoing discussions of related issues and concerns. These were not intended
to be central to the working group deliberations, but could not be completely excluded. These
included technology, assessment of current process model approaches, and the DoD-STD-2167A
standard.

Several working group members were keenly interested in the technology implied by or needed
in support of the framework and the primitives which were being discussed. The technology
discussions tended to support the need for one or more modeling languages and process
modeling kits. One or two members held the opinion that it was possible to discover a set of
primitives that hold for all possible frameworks, and that this set should be the basis for a formal
modeling language and support system.

This optimistic assessment was not shared by all. Some felt that this judgment should be
deferred until more information was available about the variety of frameworks. There was also a
belief by some that the modeling support system would need to be some kind of a knowledge
based system.

There was lively discussion about the waterfall model, its weaknesses and its strength, and its
future. There was similar discussion about the spiral model. Finally, there was much discussion
about how the Navy does software, about the perceived and the actual requirements of DoD-
STD-2167A, and about the probability of the working group impacting this standard.

2.2.4 Process Research and Exploratory Development Consensus.

A consensus in software process research and exploratory development is not only possible but
actually exists. It needs to be fostered, nurtured, and supported. One vehicle suited for this
purpose is the continuation of the efforts of Working Group 1. There continues to be a diversity
of opinion concerning how to do software process research. The most acceptable approach is for
Working Group 1 to develop several specific models within a selected framework and then to
develop a process modeling kit to support the selected framework. The Working Group I
members agreed to reconvene in early FY 90.

2.3 Working Group 1 Findings.

This Navy 6.2 working group on Software Process Models seeks to understand how large and
very large software systems are developed and used in complex organizational settings. As a
community of interested researchers, this has led us to conduct a number of large software
development experiments in laboratory settings. It has also led us to carefully review and
analyze many published studies of software life-cycle models as well as software process
frameworks. These studies, experiences, and analyses form the basis of our current position.

The Working Group I position that follows also takes into account the kinds of perplexing
constraints that affect software developed for Navy applications. Such constraints include:

3

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technoloy

o Use of Navy standard equipment.

o Software programs embedded in larger systems which ait, often mission critical.

o Software systems developed under contract to private firms.

o Software development, use, and maintenance organizations are usually in different
settings.

o Systems are continually upgraded, repaired, and extended in response to
changing requirements.

o Current approaches to software developed for the Navy do not capture
enough information of "how things get done" and thus may not be deployed,
used, and supported as originally envisioned.

2.3.1 Need for a Framework of Software Construction Models.

In general terms, we hold that there should not be a single software life-cycle model to guide all
possible Naval software system development efforts. The traditional software life-cycle model
(the so called "waterfall model") and existing software development standards are crude
indicators of software development processes. Further, they provide minimal guidance, lack
rigorous formulation, and suggest little or no automation in the engineering ever more complex
software systems.

We hold instead that what is needed is a framework for constructing models of software
development processes. Such a framework (called elsewhere a Primary life-Cycle Model) serves
as a context in which to address specific features of the application domain, the development
team and its resources, budget and schedule limits, the application requirements, and the like, as
well as the goals and objectives of its intended uses. Existing military software standards, such
as DoD-STD-2167A, can be accommodated within such a framework. Further, such models
should be formulated in terms that encourage more rigorous software process characterization
and guidance, as well as computational formalization to enable systematic analysis, query, and
reasoning. These are the characteristics of a new generation of software development models
that can be more directly managed in ways that encourage more effective automation leading to
increased software productivity and quality.

2.3.2 Understanding the Process of Large Software System Development.

We hold that the process of how large software systems are developed, used, and maintained
over time (software evolution) must be understood in terms of products, processes, and settings.
At present, we find classes of models for understanding software evolution in terms of software
product development, software production processes, and software production settings. In
general all of these models represent alternatives to the traditional software life-cycle model.
Each of the classes of models has its strengths and weaknesses which can be described at length.
However, our point here is to say that a contemporary model of software evolution should draw
from each of the three classes of models and their interrelationships and from the traditional life-
cycle model. In other words, we seek to model the evolutionary course of a particular software
system in ways that indicate what gets produced, how, where, when, why, and by whom.

4

Coordinates of a Life-cycle Model for a Softwar± System and Communicating the Need for Software Technology

2.3.3 Navy Sponsorship of Software Process Research.

We note that Navy has helped to pioneer the sponsorship of applied research and exploratory
development of such frameworks in projects at laboratories, at the Universities of California at
Irvine and Southern California, and in industrial settings. Based upon these efforts together with
the discussions of this working group, we can now present an initial outline of what issues must
be addressed by a framework for modeling software processes.

2.4 Elements or Coordinates of the Software Life-Cycle.

The following subparagraphs provide a discussion of the discrete elements or coordinates of the

software life-cycle in terms of software products, production processes, and production settings:

2.4.1 Software Products.

Software products represent the information-intensive artifacts that are incrementally constructed
and iteratively revised through a software development effort. In this regard, the settings where
software systems are produced and applied and the production processes that create them are
themselves software products, i.e., products of prior or surrounding system development
processes and settings. For example, the new skills that engineers can acquire through the
development of a new software application are a product of a software development effort.

2.4.2 Production Processes.

Software processes represent networks of tasks that progressively transform available resources,
software system requirements, and intermediate products into finished and assembled
information products, e.g., life-cycle documents. Software evolution is not a single process.
Instead, it involves many intersecting sub-processes which may be followed nondeterministically
under local project circumstances. Therefore, we choose to view software production processes
as a potentially non-linear sequence of tasks. These tasks can be decomposed into actions which
in turn can be further decomposed into primitive actions. Such a decomposition is suggestive,
not definite, except to say that software processes occur across many levels of activity, detail,
and organizational administration. Thus, models of software production processes must be
capable of abstract representation ranging from macroscopic activities to microscopic behaviors.

2.4.3 Production Settings.

The settings of software evolution can be modeled in terms of the people or programs
("execution agents") who perform production processes to produce the products. These agents
can play single or multiple roles during a software development effort. Further, their role might
be determined by their availability, participation in other organized roles, security access rights,
or expertise. A role represents the set of skills (i.e., a reliable and robust operational plan)
needed to perform some software production task. We often find, for example, software
developers in the role(s) of "specification analyst," "coder," or "QA manager." Further, in order
for an agent in a particular role to perform her/his task, a minimum set of resources and
product/process requirements must be provided for task completion. Once again, the
descriptions of which agents play which role in performing what tasks with what resources can
also be modeled as interrelated attributed objects that can be created, composed, and managed in
ways similar to those for software products and processes.

5

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technology

2.5 Process Network Decomposition.

Let us consider the suggested process network decomposition suggested above. Tasks
correspond to development activities such as "develop functional specifications." Actions
correspond to the units of the task such as "write the introduction section of the functional
specification document." Then, primitive actions correspond to the units of an action that
require invocation of a computer system or software tool command sequences such as "execute
functional specification processor on <file.spec>." Following this approach to software process
modeling, we see that such process descriptions can themselves be viewed as information
entities with control structures that organize the flow of data (i.e., software objects) through a
hierarchy of abstract activities. Further, these software process descriptions are software
products which are created and refined by other processes possibly in other settings. Therefore,
they can in a sense be constructed and managed as other software products.

2.6 Most Common and Tangible Software Prodticts.

The most common and tangible software products are, however, software life-cycle documents.
Requirements, specifications, software designs, .ource code, test cases, user manuals, and the
like characterize what the developed software system is supposed to do, how it does it, how it
was developed, how it was put together and validated, and how to install, use and maintain it.
Rather than simply viewing these documents as text files, it is possible to view these documents
as the composition of more basic software objects, such as individual requirements
specifications, a module's detailed design, a single test case, etc. Given such a view, it is
possible to construct, browse, and query classes of objects whose attributes can be interrelated or
composed with other objects. In this way, we can recognize that all software objects can be
modeled as information entities that include object type, structure, relations, and values. With
the production setting in mind, it is possible when structuring software documents to identify
and distribute sets of related objects being constructed, tested, or reviewed to teams of software
developers working concurrently or in parallel.

2.7 Conclusions.

In conclusion, we reiterate our position: contemporary models of software evolution must
account for the products, production processes, and settings, as well as their interrelationships
that arise during software development, use, and maintenance. Such models can therefore utilize
features of traditional software life-cycle models as well as those of automatable software
process models. Finally, we have described an initial approach to the construct and support of
models of software evolution through the use of software information structures that can be
composed and managed within an advanced software engineering environment. While such a
framework is yet to be fully articulated and exercised, its development, application, and
transition to real development projects appear to be within reach in the next few years.

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technology

SECTION 3.0

COMMUNICATING THE NEED FOR SOFTWARE TECHNOLOGY

3.1 Working Group 2 - Theme.

The need for a workshop that deals with the problems of communicating the need for software
technology research to decision makers who often have little or no software expertise.

In order to establish the theme for the working group, a set of introductory remarks were
prepared and forwarded to as many of the expected participants as possible prior to the working
meeting. These remarks served as a stepping-off point for the briefs and discussions of Working
Group 2 and are included as Appendix C

3.2 First Working Group 2 Session - August 7, 1989.

The first Working Group 2 session took place on August 7, 1989. This session consisted
primarily of presentations by various working group members. The following subparagraphs
address these presentations and the discussions that followed.

3.2.1 Presentation by Thomas Conrad, NUSC.

In keeping with the announced plan, Working Group 2 began its deliberations with short
presentations by several participants. The first of these was by Thomas Conrad of the Naval
Underwater Systems Center (NUSC). This presentation focussed on problems experienced when
attempting to communicate sof'.ware technology issues to major program managers at the Navy
System Commands. Among the highlights cf the resulting discussion were:

a. the lack of a common vocabulary for dealing with software is a serious problem. Even
the most well known innovators and leaders in the industry often disagree on basic software
terminology.

b. The acquisition of huge, complex real-time software systems on firm fixed price
contracts is a mixed blessing.

c. There is a tendency by many managers to seek to avoid dealing with difficult software
issues until as late as possible in the development cycle with a result that many software products
(especially documents) are treated as ancillary rather than critical path, and software qualities
such as reliability tend to become hoped for results rather than built-in characteristics.

d. Frequent, well meant changes to requirements and design specifications wreak havoc
with complex software system development schedules and product quality.

e. There is a real desire for a "silver bullet" to solve the software problem despite the
unavailability of any cure-all and, in the absence of such a silver bullet, many managers are now
asking what they should do to address the software problems they recognize. Risk Management
is a topic of significance with respect to software.

7

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technology

3.2.2 Presentation by Jay Crawford of the NWC.

The second presentation was by Jay Crawford of the Naval Weapons Center. Several potential

reasons for the lack of a perceived need for software technology within NAVAIR were given:

o Not many new starts involving significant software are planned,

o A tendency to tell program managers what they want to hear,

o The over selling of software technology in the past,

o Program managers are promoted for staying on schedule and within budget and not
for taking risks on software technology improvements,

o The tendency of program managers to come and go many times over the life-cycle of
a software product.

It was suggested that the need for software technology could be better understood by developing
data on the true cost of software (by tracking actual costs and maintaining a database for
comparison), by providing more analogies to hardware, by improvements in program manager
training, and by reducing the turnover rate for program managers.

3.2.3 Discussion on NWC Presentation.

In the ensuing discussion, several points were made.

a. It was noted that the Defense Systems Management College was doing better in
providing training for program managers that includes software technology perspectives. On the
other hand, the Navy continues to have difficulty filling its quota of training slots at DMSC.

b. There was a discussion of Ada shadow projects as vehicles for understanding the cost
and benefits of software technology and, in particular, of Ada. It was concluded that shadow
projects typically achieve implementation of only a small subset of a "real" system, and even that
accomplishment is at significant expense. As a result, comparisons between the real program
and the shadow program are difficult and conclusions are often suspect.

c. An opinion was voiced that there has been more success at transferring technology to
other technologists than to Navy program managers.

d. Finally, there was a discussion of the nature of software technology. Does it encompass
tools, processes, or both? It was mentioned that technology itself has in the past been viewed in
terms of human modifications to either matter or energy, and that perhaps now it is more
appropriately viewed in terms of modifications to information which itself lacks both mass and
energy.

3.2.4 Presentation by Robert Wasilausky of the NOSC.

The third presentation was given by Robert Wasilausky of the Naval Ocean Systems Center
(NOSC). He related that currently the software development process is receiving the most
attention from program managers. One success story has been the establishment of a Software
Engineering Process Office at NOSC. The Office spans the various departments at NOSC and is
charged with the oversight of the soft iare process used by all software intensive programs and

8

Coordinates or a Life-cycle Model for a Software System and Communicating the Need for Software Technology

the establishment of a centralized database of experiences with vari'ous software engineering
processes. Several other points were made during the ensuing discussion:

a. There is a need to develop an effective process and to capitalize the tooling to support the
process in industry.

b. There is a need to define the appropriate Navy laboratory role as regards Software
Support Activities (SSA) and to consider whether an SSA is a mechanism for exposing software
technology needs.

It was noted that perhaps the best technology transfer mechanism so far has been the software
technologists themselves moving on to different jobs and taking their skills with them to new
applications. It was also pointed out that we continually find ways to do the software technology
job even without identifiable funds sufficient to the task. This has the deleterious effect of
leaving the impression that in reality no significant funding of software technology is necessary.

3.2.5 Presentation by William Sweet of the SEI.

The final presentation of the first session was given by William Sweet of the Software
Engineering Institute (SEI). His talk identified four comprehension gaps with respect to
software technology:

o Between Researchers and Practitioners,

o Between Practitioners and Program Management Staff,

o Between Program Management Staff and Acquisition Professionals,

o Between Specialists and Generalists.

The need was cited for a common vision within DoD that includes a proper process, a defined
product, a correct vocabulary, and an appropriate sensitivity to the important quality factors.
Five approaches for bridging the comprehension gap were described. In increasing order of
success experienced by the SEI, these are:

Guidebooks

Tutorials

Conferences/Seminars

Workshops

Workshop Reports

3.2.6 Example of Successful Workshop Report.

A relevant example of a successful Workshop Report was described, namely, the Proceedings of
the Workshop on Executive Software Issues. The Workshop report addresses three categories of
issues that should be brought to the attention of executives in the defense industry, government,
and academia to propose resolutions to those issues. These categories include:

9

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technololy

o A national strategy for dealing with software issues,

o Changes to acquisition policies and practices,

o Issues associated with large complex systems.

The report was circulated at high levels and is judged to have made an impact.

3.2.7 General Discussion on Presentations.

In the discussions that followed, several Air Force initiatives aimed at improving software
management were considered. These included the Bold Stroke project and a more recent effort
implementing "software action teams." It was not clear whether the Air Force's "frontal assault"
on the software management problem was bearing results proportional to the investment being
made. It was clear, however, that the Air Force investment is far higher than the Navy's. In a
related matter, it was pointed out that there is no mechanism for capital investment in software
technology within the Navy Laboratory system. The Asset Capitalization Program at the NIF
funded laboratories specifically precludes purchase of software assets with ACP funds.

At the conclusion of the presentations, the charter of the working group was restated as follows:

"Explore some of the key dimensions of technology transition as understood by
management, operational, technical, civilian, academic, and industrial personnel."

The group proceeded to elaborate a list of discussion questions appropriate to pursuit of the

charter. The following discussion topics were selected:

o What do we mean by Software Technology?

o Are technological issues separable from management or organizational issues?

o Which issues are appropriately addressed by Navy 6.2 funding?

o Is the software technology vocabulary mature enough to permit clear transmission of
ideas?

o What have been the principal breakthroughs in software technology and how do they
parallel hardware technology progress?

o Can we cite good examples of success stories in selling the need for software
technology?

3.3 Second Working Group 2 Session - August 8, 1989.

During the second session, the working group benefited from the presence of Frank Lamonica of the
Rome Air Development Center. Mr. Lamonica had earlier presented a brief to all workshop
participants concerning the Software life-Cycle Support Environment (SLCSE).

3.3.1 Description of SLCSE Development.

SLCSE is a software development environment framework which presents a consistent and common
user interface accessing a set of software development tools supporting the fulI spectrum of DoD-

10

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Sftware Technology

STD-2167A software life-cycle activities from initial requirements analysis to maintenance. The
SLCSE was developed by RADC and represents a significant investment in software technology.
Accordingly, there was much interest in the working group as to how such a major software
technology effort had been successfully marketed to Air Force management.

3.3.2 SLCSE and Related Discussions.

In discussing the matter, it was learned that the Air Force differs significantly from the Navy in its
approach to software technology. In the first place, the RADC laboratory has a recognized charter
for software research and development. No Navy laboratory has a comparable charter. Secondly, a
full 38 man division at RADC is annually funded out of a 6.2 Block Program to perform software
technology work because of this charter. The head of this division has the flexibility to choose which
technological thrusts to pursue under contract, and these proposals are briefed to a Deputy for
Advanced Technology in the Pentagon who has decision authority.

The interesting element in the above is that the in-house laboratory people are continuously paid
independent of success in marketing the proposals for contracted work. Thus they can spend years
carefully planning a project without worrying where their salaries are coming from. This is in great
contrast with the Navy laboratory mode of operation where almost no one is funded to do generic
software technology work and researchers are largely forced to sell their skills annually to sponsors
typically more oriented to development programs than to software technology per se. In the Navy,
the key to success in marketing software technology proposals is obvious relevance to high priority
Navy warfare areas. A possible conclusion is that growth of the Navy 6.2 software effort may
require greater focus and less breadth in the future.

3.4 Answers to Questions Posed in Session 1.

At this point in the discussion, it was agreed to try to answer some of the questions posed during the
first session.

3.4.1 Definition of Software Technology.

The first topic addressed was a definition of the term "software technology." After much discussion,
it was decided that software technology embodies both process and product. Consequently, the
following draft definition of software technology was devised:

o Principles and Guidelines for the development and support of cost-effective, high
quality software.

o Software paradigms, algorithms, and products that extend the capabilities and
performance of software intensive systems.

3.4.2 Identification of Software Technology Breakthroughs.
The next topic of discussion was the identification of the principal software technology
breakthroughs to date. After some reflection, the following list of important developments was
generated. It is neither complete nor chronological, but serves as a starting point for further work:

o High Order Programming Languages

o "Structured Programming"

11

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software TechOIlJ

o Time-sharing

o Virtual Memory Management

o Object-Oriented Design

o Information Hiding Principles

o Cooperating Sequential Processes

o Computer Communications Protocols

o The E-R Model

3.4.3 Issues to be Addressed by the Navy 6.2 Software Program.

The next topic of discussion was identification of which issues are most appropriately addressed
by a Navy 6.2 software program. It was stated that the aims of the 6.1 program and the
requirements of the end users provide a natural context. In addition, the obvious need to avoid
unnecessary duplication of efforts by others was reiterated. There was a perceived need to
stimulate industry to make progress in areas of interest to the Navy. A specific need was cited to
address capabilities that make the Navy a smarter buyer and owner of software. In addition,
there is a requirement to evolve technologies relevant to very large, complex, real-time software
systems, potentially distributed across heterogeneous processor sets, and that continuously
evolve over long lifetimes.

It was concluded that technological issues considered in a vacuum yield unsatisfactory results.
In many cases, management and organizational issues are strongly connected with technology
issues and are appropriately addressed by a 6.2 software program. Indeed, software itself is
largely an information management concept. Further, it was postulated that the different levels
and types of management problems may require different treatment.

3.4.4 Discussion of Software Terms Needing Definition.

A short discussion of the software terms needing clear definitions yielded a very preliminary list
that might be addressed in a glossary for managers. The list needs to be significantly expanded
before any meaningful glossary could be produced. The preliminary list of important terms
includes:

Environment Toolset
Process Method
Software Engineering Case Tools
Software Maintenance Post-Deployment Support
Software Evolution Software Metrics
Runtime System/environment Expert System
Workstation Software Risk Management
Software Reusability Software Productivity
Host/target Systems Software life-Cycle

3.5 Third Working Group 2 Session - August 9, 1989.

12

Coordinates of a Lfe-cycle Model for a Software System and CommunicatIng the Need for Software Technolog

The final session was given over to the development of a set of options for collecting and
presenting information on software technology in ways that would help bridge the perceived
communication gap.

3.5.1 Presenting Software Technology Information.

After considerable discussion the following possibilities were derived for collecting and
presenting information on software technology in ways that would help bridge the perceived
communication gap:

o Elaborate a list of software technology issues and a set of important questions
associated with each,

o Generate a guidebook on the role of software technology in Navy systems - "The

Layman's Guide to Software Technology,"

o Vocabulary focus: produce a prose glossary of software technology terms,

o Produce a description of software technology by analogy with hardware technology,

o Develop a Software Technology Master Plan for the Navy that forecasts trends in
requirements and trends in technology availability,

o Use an example system as a vehicle for explaining software technology,

o Produce an Executive level videotape as a marketing device to explain the Navy's
6.2 software program.

This collection of options was further refined by estimating the level of effort each was expected
to require to be completed, a judgment of the order in which to produce each (assuming all were
to be produced), and an estimate of the relative value of each in terms of contribution to
resolving the ne:ceived communication problem. The results of this effort are summarized in
Table 3-1.

Table 3-1. Level-of-effort, order, and relative value of options.

OPTION LOE REQUIRED ORDER VALUE

Issues With Questions 1 3 MM 1 2 1 1

Layman's Guidebook 1 12 MM 1 6 1 3

Prose Glossary 3 MM 1 3 2

Hardware Analogy 3 MM 1 1 1 2

Master Plan 9 MM 4 1

Definition By Example 1 6 MM 1 2

Executive Video 6 MM 1 5 3

13

Coordinates of a Life-cycle Model for a Software System and Communlcatng the Need for Software Technolom

3.6 Future Working Group 2 Meetings.

It was decided to continue the efforts of the working group for at least one more meeting to be
held in the Washington DC area in the Autumn of 1989 so as to pursue one or more of the
options discussed above.

14

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Tech~ology

APPENDIX A

Working Group 1 Attendees

Software Technology Project Working Meeting

1-3 August 1989

NA Cmmand/Org Enhmi
Mark Moriconi SI International (415) 859-5364 moriconi@

Computer Science Lab csl.sri.com
Menlo Park, CA 94025

Tom Cheatham Software Options, Inc. (617) 497-5054 cheatham@
22 Hilliard St. harvard.edu
Cambridge, MA 02138

Walt Scacchi Univ. of Southern California (213) 743-7424 scacchi@
Compuser Science Dept. vaxa.isi.edu
Los Angeles, CA 90089-0782

Bob Westbrook Naval Weapons Center (619) 939-5775 westbrook@
Code 31C AV 437-5775 nwc.navy.mil
China Lake, CA 93555

Michael Karr Software Options, Inc. (617) 497-5054 mike%soi.uucp@
22 Hilliard St. harvard.harvard.edu
Cambridge, MA 02138

Jim Oblinger NUSC (401) 841-3354 oblingei@
Code 2211,Bldg 1171-1 AV 948-3354 nusc-ada.arpa
Newport, RI 02841-5047

Luqi Naval PostGraduate School (408) 646-2735 luqi@
Monterey, CA nps-cs.arpa

CDR Jane Van Fossen ONT Code 227 (202) 696-4791
800 N. Quincy St.
Arlington, VA 22217-5000

Richard Jullig Kestrel Institute (415) 433-6871 jullig@
3260 Hillview kestrel.kestrel.edu
Palo Alto, CA 94304

David Wile USC/Info. Sci. Inst. (213) 822-1511 wile@
4676 Marina del Rey vaxa.isi.edu
Los Angeles, Ca 90292

Phil Hwang NSWC White Oak (202) 394-1351 hwang@
Code U33 nswc-wompa
Silver Spring, MD 20903-5000

Peter Feiler Software Eng. Inst. (412) 268-7790 phf@
Carnegie Mellon Univ sei.cmu.edu
Pittsburgh, PA 15213

15

Coordinates of a Lire-cycle Model for a Software System and Communicating the Need for Software Technology

Command/Org Phone -Mi
W. Linwood Sutton NOSC Code 411 (619) 553-4082 suuon@

San Diego, CA 92125 nosc-tecrarpa

Leon Osterweil UC-Irvine (714) 856-4048 ljo@
Information and Comp Sci Dept ics.uci.edu
Irvine, CA 92717

John Bilmanis NSWC White Oak (202) 394-1229 jbilman@
Code U042 nswc-womp
Silver Spring, MD 20903-5000

Raymond Liu NOSC Code 411 (619) 553-4076 liu@
San Diego, CA 92125 nosc.mil

16

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technology

APPENDIX B

Participants on Working Group 2

at the Navy 6.2 Software Workshop

William Sweet Software Engineering Institute

Connie Heitmeyer Naval Research Laboratory

Stan Wilson Naval Research Laboratoq

James Smith Office of Naval Research

Robert Wasilausky Naval Ocean Systems Center

Frank Lamonica Rome Air Development Center

John Zahor University of Washington

Jay Crawford Naval Wapons Center

Thomas Conrad Naval Underwater Systems Center

CDR Jane Van Fossen Office of Naval Technology

17

Coordinates of a Life-cycle Model for a Software System and Communicating the Need for Software Technology

APPENDIX C

The Initial Charge to Working Group 2:

Bridging the Software Technology Comprehension Gap

A dangerous thing has happened to computer software. We've become dependent upon it. Most
of us are software addicts and don't even realize it. Software is running our cars; it manages our
telecommunications; it entertains us with sophisticated video games; it handles our banking; it
manages the restocking of grocery store shelves. It's everywhere.

But it's nowhere. We don't see the software computing our gas mileage in real time. We don't
watch the software determine the routing of our telephone calls. When the video game fills our
television screen with action filled graphics, the complex software that makes it happen is hidden
away. When the automatic teller machine produces the cash we've requested, the software that
verified our account number and debited our account was not only not seen at work, it was
deliberately concealed from our attention. As we check out of the grocery store, we hardly
notice the software that has recorded all our purchases, adjusted the inventory data, and
generated orders for resupply.

The software is not obvious, it is not seen or heard, and it does not intrude on our consciousness.
But it is there. What we see, what we hear, and what we feel is some piece of hardware: a
display, a telephone, a control console, a sales register that prints a list of our purchases.

The Navy uses more software in its combat systems than any of the everyday applications
mentioned here. The Navy's software is more complex. It has the highest demands on
reliability. It has the longest lifetime. Navy combat systems depend on software.

But that software is still a mystery to many people involved with it. We should not be surprised.
Software is the vital part you cannot see, hear, or feel. It is the thing that makes the system
useful, but which has no physical manifestation as a system in and of itself.

As a consequence, most Navy program managers, acquisition officials, and budgetary decision
makers have difficulty understanding the importance of software technology. Many have come
to know that problems with software can result in significant cost and schedule impact. But
since software as an entity is so poorly understood, software technology is all the more
mysterious, focusing as it does on establishing better ways of producing an invisible product.

The objective of the working session will be to collect tutorial information on software
technology as it relates to the Navy. The eventual publication of a layman's guide to software
technology is a worthy objective, and it is hoped that the data collected here will provide a
framework from which such a guide could evolve. In that regard, the organization of the
information is nearly as important as the information itself, and it is expected that the working
session will specifically address this issue. If the real question is how to explain the need for
software technology, then several possible expository approaches come to mind.

One approach is to consider software technology in terms of Navy investment. In this case, the
role of software technology is viewed in terms of 6.1, 6.2, 6.3 funding that addresses perceived
software technology shortfalls. Alternatively, there is an organizational view that explains
responsibilities of various Navy/DoD agencies for the availability of required software
technology. Another approach is to structure the explanation of software technology according
to a derived taxonomy of important issues (such as reliability, adaptability, production economy,

18

Coordinates of a Llfe-cyce Model for a Software System and Communlcating the Need for Software Tecnooty

integrity, etc.) Still another view would be to describe the need for software technology on a life-
cycle phase basis according to DoD-STD-2167A or some other process model for software
generation. Whatever the view, or collection of views, selected, it seems necessary to address
both trends in software requirements and trends in available technology.

At the August working session, it is planned that short (15 minute) briefs be presented by Navy
air, surface, subsurface, and shore systems representatives. These talks would highlight
experiences relating to difficulty in communicating the need for software technology. It is hoped
to characterize common problems in this way to help focus the discussion. In addition, it is
hoped that the Air Force perspective can be obtained from an RADC participant. Finally, a brief
by the Software Engineering Institute on its experience with technology transition would round
out the introductory briefs with a discussion on effective ways to communicate technology
requirements.

After the introductory briefs, it is planned to pose the following questions for discussion:

o What are the top ten things about software that need to be understood?

o What are the principal reasons for Navy investment in software technology?

o What areas of software technology are developing at the slowest pace by comparison
with Navy requirements?

o What are likely to be the new software technologies required in the 1995-2005 time
frame?

o What form should explanatory material about software technology take?

The expectation is that the answers to these questions will form the core of the working
group's output

19

Letter Report
on the

Primary Life Cycle Model
(with Recommendation)

Software Engineering Technology Project (SETP) Project Management makes the following
recommendation to N02D Block Management:

- That the process task under SETP be re-oriented to development of a Primary Life
Cycle Model (PLCM) as described below (I)

- That the task be performed according to the approach described below (II)

- That the benefits of this recommendation by duly noted (III)

20

UNDERSTANDING THE PLCM

The PLCM embodies two principles and offers them as its key features, a modeling
requirements principle and a modeling principle. These features are made available
as a two-tiered model, each tier focusing on and featuring one of the principles.

PLCM Tier 1: Modeling Requirements

Process Drivers & Factors

PLCM Tier 2: Models and Tailoring

Tier 1 Activity

The activity associated with Tier 1, as it relates to a particular project-specific
application of the PLCM, consists of identifying the process drivers or factors which
are important to the particular project, the relative importance of the factors, and
how they are to be taken together (or not taken together).

Factors may include skill level and geography of human resources, schedule, cost,
reliability in system performance, performance within time-constraints.

Reliability may be the ke) Jne project, while schedule may be more important for
another.

Tier 2 Activiy

For the specific project, this activity is concentrated on defining and describing
appropriate models, consistent with and supportive of project-specific goals and
requirements. The activity first maps the results of the tier 1 activity to tier 2 and
then incorporates these mapped results into the model definitions and descriptions.
Minimally, the descriptions co,-r definitions of processes to be used and their
relationship to personnel, schedule and other resources.

21

This activity does not start from scratch. Tier 2 provides/assumes the availability of
a number of models and modeling approaches consistent with DoD 2167. The
models are in some sense parameterized (or at least "parameterizable"). The models
are put together, and their parameters set according as determined by analysis of the
mapped results from Tier 1 (ie. analysis of the factors).

II. APPROACH

A. Develop an initial PLCM and evolve it in an empirical and practical setting.

B. Provide a process modeling and tailoring computerized support system to
facilitate the use of the PLCM approach.

C. Pursue the work in an orderly and coordinated fashion under the following
activities:

* Initial PLCM Definition
• PLCM Evolution
* Research on Process Model Support Requirements
" Formal Definition of Process Support (PS) Systems
* Experimental Research with PS Systems and Technologies
* PLCM Transition

D. Involve the Navy Labs and Universities in the work process and also in the
review of the results.

III. BENEFITS

Of the Model

-- PLCM allows the process drivers to become keys in making decisions about
a system development.

-- PLCM is not limited to any particular model (e.g. Waterfall), but can
accommodate and utilize a range of models and modeling approaches.

-- PLCM is not a specific model but a modeling framework which guides and
constrains the model definition effort, makes tailorability a more positively
guided (and supported) activity, and shortens the time required to do model
development and tailoring.

-- PLCM provides a number of models which become 'Building Blocks' to be
used in the model definition and development effort. This saves the model
Definer-Builder the pain of having to start from scratch.

22

Of the Approach

- Reduces technical risks associated with the effort by its pairing with real Navy
personnel and real projects, and by its use of researchers who focus on both
the practical and the theoretical issues.

-- Makes Success Comes in Stages

1. The effort can succeed at Tier 1 level long before the problems
associated with mapping of Tier 1 to Tier 2 are solved.

2. The effort can succeed at bonding of Tier 1 and Tier 2 (ie. mapping of
Tier 1 to Tier 2) and generation of the models as a labor-intensive
manual activity.

3. The effort can further succeed through providing computerized tools
to support the activities identified above, which simplify the activities
so that they can be performed by a larger class and persons, and which
also automatically generate the models.

- Makes transition of result more probable through its tight coupling with the
Navy labs.

23

REPORT DOCUMENTATION PAGE No. 070vM

PUbIc mpmg bmfor thl, of l mlmon Won Is .rna-d to wvrge I hour pw rspom. Wockd" th tne fwlew" habucdons. ee chft sod" dat sourew goeing ad
madnkfg tdW& needed. ad n an rewtngttonc k wmun serd cI m m ugwr rng th' ejiarnit or any aped of* d 1 -dn oeml.w Icug
suggemb e duclngtb1 burden. loWuhngftn HeI ua' nSerSMes. DkOreaeOr Iewa nnWlnOperllns andReoal2lSJilerOn D1215 HIJegine. SuIs 1204, AlIng.VA 22202-42.
and to IN " of fice and Bugt, Paewor Reduction 0o4o-IM 8, . DC 20603.

1. AGENCY USE ONLY Lme b,* 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

July 1990 Final January 1990

4. TITLE AND SLBTIE S. FUNDING NUMBERS

COORDINATES OF A LIFE-CYCLE MODEL FOR A SOFTWARE SYSTEM AND
COMMUNICATING THE NEED FOR SOFTWARE TECHNOLOGY C: N66001-87-D-0179

PE: 0602234N
6. AUTHOR(S) WU: DN088 690

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGIANIZATION
REPORT NUMBER

TECHPLAN Corporation
5353 Mission Center Road, Suite 310
San Diego, CA 92108-0018

B SPONSORING.$NWTORNG AGENCY NAME(S) AND ADORESS(ES) 10 SPONSORINGAOMTORIN
AGENCY REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000 NOSC TD 1881

11. SUPPLEMENTARY NOTES

12L. DISTRIBUTINXAVAILAB&UTY STATEMENT 12b. D9STRIBLUflON CODE

Approved for public release; distribution is unlimited.

13 ABSTRACT (nmadru 200 wade)

This document presents the results of a software technology workshop meeting. Two parallel working groups were formed to
address the following issues:

a. Evolving a consensus on the coordinates of a suitable software life-cycle model for the Navy.
b. Communicating the need for software technology.

14 SUBJECT TERMS 15. NUMBR OF PAGES

life-cycle models 30
IS. PRICE CODE

17. SECURITY CLASIFICATION 1. SECURfY CLASSFICATION 19. SECURITY CLASSFICATION 20. UMTATION OF ABSTRACT
OF RIEPORT OF ThIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540.01-204600 Standad form M

